Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.160
Filtrar
1.
Phytochemistry ; 221: 114045, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460781

RESUMO

Plants attract beneficial insects and promote pollination by releasing floral scents. Salvia miltiorrhiza, as an insect-pollinated flowering plant, which has been less studied for its floral aroma substances. This study revealed that S. miltiorrhiza flowers produce various volatile terpenoids, including five monoterpenes and ten sesquiterpenes, with the sesquiterpene compound (E)-ß-caryophyllene being the most abundant, accounting for 28.1% of the total volatile terpenoids. Y-tube olfactometer experiments were conducted on the primary pollinator of S. miltiorrhiza, the Apis ceranas. The results indicated that (E)-ß-caryophyllene compound had an attractive effect on the Apis ceranas. By comparing the homologous sequences with the genes of (E)-ß-caryophyllene terpene synthases in other plants, the SmTPS1 gene was selected for further experiment. Subcellular localization experiments showed SmTPS1 localized in the cytoplasm, and its in vitro enzyme assay revealed that it could catalyze FPP into ß-Elemene, (E)-ß-caryophyllene and α-Humulene. Overexpression of SmTPS1 in S. miltiorrhiza resulted in a 5.29-fold increase in gene expression. The GC-MS analysis revealed a significant increase in the concentration of (E)-ß-caryophyllene in the transgenic plants, with levels 2.47-fold higher compared to the empty vector plants. Furthermore, Y-tube olfactometer experiments showed that the transgenic plants were significantly more attractive to Apis ceranas compared to the empty vector plants. Co-expression analysis suggested that four SmMYCs (SmMYC1, SmMYC5, SmMYC10, and SmMYC11) may be involved in the transcriptional regulation of SmTPS1. The yeast one-hybrid screen and the Dual luciferase assay indicated that SmMYC10 positively regulates the expression of SmTPS1. In conclusion, this study lays a foundation for the functional analysis and transcriptional regulation of terpene synthase genes in S. miltiorrhiza.


Assuntos
Alquil e Aril Transferases , Sesquiterpenos Policíclicos , Salvia miltiorrhiza , Abelhas , Animais , Salvia miltiorrhiza/metabolismo , Odorantes , Terpenos/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Protein Sci ; 33(4): e4969, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38532715

RESUMO

The peptidoglycan biosynthesis pathway plays a vital role in bacterial cells, and facilitates peptidoglycan layer formation, a fundamental structural component of the bacterial cell wall. The enzymes in this pathway are candidates for antibiotic development, as most do not have mammalian homologues. The UDP-N-acetylglucosamine (UNAG) enolpyruvyl transferase enzyme (MurA) in the peptidoglycan pathway cytoplasmic step is responsible for the phosphoenolpyruvate (PEP)-UNAG catalytic reaction, forming UNAG enolpyruvate and inorganic phosphate. Reportedly, UDP-N-acetylmuramic acid (UNAM) binds tightly to MurA forming a dormant UNAM-PEP-MurA complex and acting as a MurA feedback inhibitor. MurA inhibitors are complex, owing to competitive binding interactions with PEP, UNAM, and UNAG at the MurA active site. We used computational methods to explore UNAM and UNAG binding. UNAM showed stronger hydrogen-bond interactions with the Arg120 and Arg91 residues, which help to stabilize the closed conformation of MurA, than UNAG. Binding free energy calculations using end-point computational methods showed that UNAM has a higher binding affinity than UNAG, when PEP is attached to Cys115. The unbinding process, simulated using τ-random acceleration molecular dynamics, showed that UNAM has a longer relative residence time than UNAG, which is related to several complex dissociation pathways, each with multiple intermediate metastable states. This prevents the loop from opening and exposing the Arg120 residue to accommodate UNAG and potential new ligands. Moreover, we demonstrate the importance of Cys115-linked PEP in closed-state loop stabilization. We provide a basis for evaluating novel UNAM analogues as potential MurA inhibitors. PUBLIC SIGNIFICANCE: MurA is a critical enzyme involved in bacterial cell wall biosynthesis and is involved in antibiotic resistance development. UNAM can remain in the target protein's active site for an extended time compared to its natural substrate, UNAG. The prolonged interaction of this highly stable complex known as the 'dormant complex' comprises UNAM-PEP-MurA and offers insights into antibiotic development, providing potential options against drug-resistant bacteria and advancing our understanding of microbial biology.


Assuntos
Alquil e Aril Transferases , Simulação de Dinâmica Molecular , Ácidos Murâmicos , Peptidoglicano , Alquil e Aril Transferases/metabolismo , Antibacterianos/farmacologia , Difosfato de Uridina
3.
J Agric Food Chem ; 72(13): 6871-6888, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38526460

RESUMO

Sesquiterpenes comprise a diverse group of natural products with a wide range of applications in cosmetics, food, medicine, agriculture, and biofuels. Heterologous biosynthesis is increasingly employed for sesquiterpene production, aiming to overcome the limitations associated with chemical synthesis and natural extraction. Sesquiterpene synthases (STSs) play a crucial role in the heterologous biosynthesis of sesquiterpene. Under the catalysis of STSs, over 300 skeletons are produced through various cyclization processes (C1-C10 closure, C1-C11 closure, C1-C6 closure, and C1-C7 closure), which are responsible for the diversity of sesquiterpenes. According to the cyclization types, we gave an overview of advances in understanding the mechanism of STSs cyclization from the aspects of protein crystal structures and site-directed mutagenesis. We also summarized the applications of engineering STSs in the heterologous biosynthesis of sesquiterpene. Finally, the bottlenecks and potential research directions related to the STSs cyclization mechanism and application of modified STSs were presented.


Assuntos
Alquil e Aril Transferases , Sesquiterpenos , Sesquiterpenos/metabolismo , Ciclização , Catálise , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo
4.
Plant Cell Rep ; 43(2): 53, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315261

RESUMO

KEY MESSAGE: Retromer protein AtVPS29 upregulates the SLY1 protein and downregulates the RGA protein, positively stimulating the development of the root meristematic zone, which indicates an important role of AtVPS29 in gibberellin signaling. In plants, the large retromer complex is known to play roles in multiple development processes, including cell polarity, programmed cell death, and root hair growth in Arabidopsis. However, many of its roles in plant development remain unknown. Here, we show that Arabidopsis trimeric retromer protein AtVPS29 (vacuolar protein sorting 29) modulates gibberellin signaling. The SLEEPY1 (SLY1) protein, known as a positive regulator of gibberellic acid (GA) signaling, exhibited lower abundance in vps29-3 mutants compared to wild-type (WT) plants. Conversely, the DELLA repressor protein, targeted by the E3 ubiquitin ligase SCF (Skp, Cullin, F-box) complex and acting as a negative regulator of GA signaling, showed increased abundance in vps29-3 mutants compared to WT. The vps29-3 mutants exhibited decreased sensitivity to exogenous GA supply in contrast to WT, despite an upregulation in the expression of GA receptor genes within the vps29-3 mutants. In addition, the expression of the GA synthesis genes was downregulated in vps29-3 mutants, implying that the loss of AtVPS29 causes the downregulation of GA synthesis and signaling. Furthermore, vps29-3 mutants exhibited a reduced meristematic zone accompanied by a decreased cell number. Together, these data indicate that AtVPS29 positively regulates SLY1-mediated GA signaling and plant growth.


Assuntos
Alquil e Aril Transferases , Proteínas de Arabidopsis , Arabidopsis , Giberelinas , Proteínas de Transporte Vesicular , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Mutação , Proteínas Repressoras/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo
5.
Plant Sci ; 342: 112046, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38395069

RESUMO

Kalmegh (Andrographis paniculata) spatiotemporally produces medicinally-important ent-labdane-related diterpenoids (ent-LRDs); andrographolide (AD), 14-deoxy-11,12-didehydroandrographolide (DDAD), neoandrographolide (NAD). ApCPS1 and ApCPS2, the ent-copalyl pyrophosphate (ent-CPP)-producing class II diterpene synthases (diTPSs) were identified, but their contributions to ent-CPP precursor supply for ent-LRD biosynthesis were not well understood. Here, we characterized ApCPS4, an additional ent-CPP-forming diTPS. Further, we elucidated in planta function of the ent-CPP-producing diTPSs (ApCPS1,2,4) by integrating transcript-metabolite co-profiles, biochemical analysis and gene functional characterization. ApCPS1,2,4 localized to the plastids, where diterpenoid biosynthesis occurs in plants, but ApCPS1,2,4 transcript expression patterns and ent-LRD contents revealed a strong correlation of ApCPS2 expression and ent-LRD accumulation in kalmegh. ApCPS1,2,4 upstream sequences differentially activated ß-glucuronidase (GUS) in Arabidopsis and transiently-transformed kalmegh. Similar to higher expression of ApCPS1 in kalmegh stem, ApCPS1 upstream sequence activated GUS in stem/hypocotyl of Arabidopsis and kalmegh. However, ApCPS2,4 upstream sequences weakly activated GUS expression in Arabidopsis, which was not well correlated with ApCPS2,4 transcript expression in kalmegh tissues. Whereas, ApCPS2,4 upstream sequences could activate GUS expression at a considerable level in kalmegh leaf and roots/calyx, respectively, suggesting the involvement of transcriptional regulator(s) of ApCPS2,4 that might participate in kalmegh-specific diterpenoid pathway. Interestingly, ApCPS2-silenced kalmegh showed a drastic reduction in AD, DDAD and NAD contents and compromised defense against insect herbivore Spodoptera litura. However, ent-LRD contents and herbivore defense in ApCPS1 or ApCPS4-silenced plants remained largely unaltered. Overall, these results suggested an important role of ApCPS2 in producing ent-CPP for medicinal ent-LRD biosynthesis and defense against insect herbivore.


Assuntos
Alquil e Aril Transferases , Andrographis , Arabidopsis , Diterpenos , Glucosídeos , Tetra-Hidronaftalenos , Andrographis paniculata , Arabidopsis/metabolismo , Herbivoria , NAD/metabolismo , Alquil e Aril Transferases/metabolismo , Diterpenos/metabolismo , Andrographis/genética , Andrographis/metabolismo
6.
Angew Chem Int Ed Engl ; 63(19): e202401539, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38372063

RESUMO

Mining of two multiproduct sesterterpene synthases from Lentzea atacamensis resulted in the identification of the synthases for lentzeadiene (LaLDS) and atacamatriene (LaATS). The main product of LaLDS (lentzeadiene) is a new compound, while one of the side products (lentzeatetraene) is the enantiomer of brassitetraene B and the other side product (sestermobaraene F) is known from a surprisingly distantly related sesterterpene synthase. LaATS produces six new compounds, one of which is the enantiomer of the known sesterterpene Bm1. Notably, for both enzymes the products cannot all be explained from one and the same starting conformation of geranylfarnesyl diphosphate, demonstrating the requirement of conformational flexibility of the substrate in the enzymes' active sites. For lentzeadiene an intriguing thermal [1,5]-sigmatropic rearrangement was discovered, reminiscent of the biosynthesis of vitamin D3. All enzyme reactions and the [1,5]-sigmatropic rearrangement were investigated through isotopic labeling experiments and DFT calculations. The results also emphasize the importance of conformational changes during terpene cyclizations.


Assuntos
Sesterterpenos , Terpenos , Terpenos/metabolismo , Terpenos/química , Sesterterpenos/química , Sesterterpenos/metabolismo , Conformação Molecular , Alquil e Aril Transferases/metabolismo , Alquil e Aril Transferases/química , Estereoisomerismo
7.
Biochem Biophys Res Commun ; 677: 119-125, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37573766

RESUMO

Sesquiterpene synthases convert farnesyl diphosphate into various sesquiterpenes, which find wide applications in the food, cosmetics and pharmaceutical industries. Although numerous putative sesquiterpene synthases have been identified in fungal genomes, many lack biochemical characterization. In this study, we identified a putative terpene synthase AcTPS3 from Acremonium chrysogenum. Through sequence analysis and in vitro enzyme assay, AcTPS3 was identified as a sesquiterpene synthase. To obtain sufficient product for NMR testing, a metabolic engineered Saccharomyces cerevisiae was constructed to overproduce the product of AcTPS3. The major product of AcTPS3 was identified as (+)-cubenene (55.46%) by GC-MS and NMR. Thus, AcTPS3 was confirmed as (+)-cubenene synthase, which is the first report of (+)-cubenene synthase. The optimized S. cerevisiae strain achieved a biosynthesis titer of 597.3 mg/L, the highest reported for (+)-cubenene synthesis.


Assuntos
Acremonium , Alquil e Aril Transferases , Sesquiterpenos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sesquiterpenos/química , Acremonium/genética , Acremonium/metabolismo , Genoma Fúngico , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo
8.
Chembiochem ; 24(22): e202300518, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37605310

RESUMO

Drimane-type sesquiterpenes (DTSs) are significant terpenoid natural products characterized by their unique C15 bicyclic skeleton. They are produced by various organisms including plants, fungi, bacteria and marine organisms, and exhibit a diverse array of bioactivities. These bioactivities encompass antifeedant, anti-insecticidal, anti-bacterial, anti-fungal, anti-viral and anti-proliferative properties. Some DTSs contribute to the pungent flavor found in herb plants like water pepper, while others serve as active components responsible for the anti-cancer activities observed in medicinal mushrooms such as (-)-antrocin from Antrodia cinnamomea. Recently, DTS synthases have been identified in various organisms, biosynthesizing drimenol, drim-8-ene-11-ol and (+)-albicanol, which all possess the characteristic drimane skeleton. Interestingly, despite these enzymes producing chemical molecules with a drimane scaffold, they exhibit minimal amino acid sequence identity across different organisms. This Concept article focuses on the discovery of DTS synthases and the tailoring enzymes generating the chemical diversity of drimane natural products. We summarize and discuss their key features, including the chemical mechanisms, catalytic motifs and functional domains employed by these terpene synthases to generate DTS scaffolds.


Assuntos
Alquil e Aril Transferases , Produtos Biológicos , Sesquiterpenos , Sesquiterpenos/química , Terpenos/metabolismo , Sequência de Aminoácidos , Bactérias , Alquil e Aril Transferases/metabolismo
9.
DNA Repair (Amst) ; 129: 103542, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37453245

RESUMO

A multitude of different types of lesions is continuously introduced into the DNA inside our cells, and their rapid and efficient repair is fundamentally important for the maintenance of genomic stability and cellular viability. This is achieved by a number of DNA repair systems that each involve different protein factors and employ versatile strategies to target different types of DNA lesions. Intriguingly, specialized DNA repair proteins have also evolved to form non-functional complexes with their target lesions. These proteins allow the marking of innocuous lesions to render them visible for DNA repair systems and can serve to directly recruit DNA repair cascades. Moreover, they also provide links between different DNA repair mechanisms or even between DNA lesions and transcription regulation. I will focus here in particular on recent findings from single molecule analyses on the alkyltransferase-like protein ATL, which is believed to initiate nucleotide excision repair (NER) of non-native NER target lesions, and the base excision repair (BER) enzyme hOGG1, which recruits the oncogene transcription factor Myc to gene promoters under oxidative stress.


Assuntos
Reparo do DNA , DNA/química , DNA/genética , DNA/metabolismo , Alquil e Aril Transferases/química , Alquil e Aril Transferases/metabolismo , Modelos Moleculares , Estrutura Terciária de Proteína , Conformação de Ácido Nucleico , Oxirredução , Transcrição Gênica
10.
PLoS One ; 18(6): e0287524, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37352235

RESUMO

It is critical to gather biological information about rare and endangered plants to incorporate into conservation efforts. The secondary metabolism of Pityopsis ruthii, an endangered flowering plant that only occurs along limited sections of two rivers (Ocoee and Hiwassee) in Tennessee, USA was studied. Our long-term goal is to understand the mechanisms behind P. ruthii's adaptation to restricted areas in Tennessee. Here, we profiled the secondary metabolites, specifically in flowers, with a focus on terpenes, aiming to uncover the genomic and molecular basis of terpene biosynthesis in P. ruthii flowers using transcriptomic and biochemical approaches. By comparative profiling of the nonpolar portion of metabolites from various tissues, P. ruthii flowers were rich in terpenes, which included 4 monoterpenes and 10 sesquiterpenes. These terpenes were emitted from flowers as volatiles with monoterpenes and sesquiterpenes accounting for almost 68% and 32% of total emission of terpenes, respectively. These findings suggested that floral terpenes play important roles for the biology and adaptation of P. ruthii to its limited range. To investigate the biosynthesis of floral terpenes, transcriptome data for flowers were produced and analyzed. Genes involved in the terpene biosynthetic pathway were identified and their relative expressions determined. Using this approach, 67 putative terpene synthase (TPS) contigs were detected. TPSs in general are critical for terpene biosynthesis. Seven full-length TPS genes encoding putative monoterpene and sesquiterpene synthases were cloned and functionally characterized. Three catalyzed the biosynthesis of sesquiterpenes and four catalyzed the biosynthesis of monoterpenes. In conclusion, P. ruthii plants employ multiple TPS genes for the biosynthesis of a mixture of floral monoterpenes and sesquiterpenes, which probably play roles in chemical defense and attracting insect pollinators alike.


Assuntos
Alquil e Aril Transferases , Magnoliopsida , Sesquiterpenos , Terpenos/metabolismo , Vias Biossintéticas/genética , Magnoliopsida/metabolismo , Monoterpenos/metabolismo , Sesquiterpenos/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Funct Integr Genomics ; 23(2): 197, 2023 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-37270747

RESUMO

Cottonseed is an invaluable resource, providing protein, oil, and abundant minerals that significantly contribute to the well-being and nutritional needs of both humans and livestock. However, cottonseed also contains a toxic substance called gossypol, a secondary metabolite in Gossypium species that plays an important role in cotton plant development and self-protection. Herein, genome-wide analysis and characterization of the terpene synthase (TPS) gene family identified 304 TPS genes in Gossypium. Bioinformatics analysis revealed that the gene family was grouped into six subgroups TPS-a, TPS-b, TPS-c, TPS-e, TPS-f, and TPS-g. Whole-genome, segmental, and tandem duplication contributed to the evolution of TPS genes. According to the analysis of selection pressure, it was predicted that TPS genes experience predominantly negative selection, with positive selection occurring subsequently. RT-qPCR analysis in TM-1 and CRI-12 lines revealed GhTPS48 gene as the candidate gene for silencing experiments. To summarize, comprehensive genome-wide studies, RT-qPCR, and gene silencing experiments have collectively demonstrated the involvement of the TPS gene family in the biosynthesis of gossypol in cotton.


Assuntos
Alquil e Aril Transferases , Gossipol , Humanos , Gossipol/metabolismo , Gossypium/genética , Óleo de Sementes de Algodão/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Regulação da Expressão Gênica de Plantas
12.
World J Microbiol Biotechnol ; 39(7): 194, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37169980

RESUMO

Terpenes and terpenoids are a group of isoprene-derived molecules that constitute the largest group of natural products and secondary metabolites produced by living things, with more than 25,000 compounds reported. These compounds are synthesized by enzymes called terpene synthases, which include several families of cyclases and enzymes. These are responsible for adding functional groups to cyclized structures. Fungal terpenoids are of great interest for their pharmacological properties; therefore, understanding the mechanisms that regulate their synthesis (regulation of the mevalonate pathway, regulation of gene expression, and availability of cofactors) is essential to direct their production. For this reason, this review addresses the detailed study of the biosynthesis of fungal terpenoids and their regulation by various physiological and environmental factors.


Assuntos
Alquil e Aril Transferases , Proteínas Fúngicas , Fungos , Terpenos , Terpenos/metabolismo , Fungos/enzimologia , Alquil e Aril Transferases/metabolismo , Proteínas Fúngicas/metabolismo
13.
G3 (Bethesda) ; 13(7)2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37119806

RESUMO

The current understanding of farnesyltransferase (FTase) specificity was pioneered through investigations of reporters like Ras and Ras-related proteins that possess a C-terminal CaaX motif that consists of 4 amino acid residues: cysteine-aliphatic1-aliphatic2-variable (X). These studies led to the finding that proteins with the CaaX motif are subject to a 3-step post-translational modification pathway involving farnesylation, proteolysis, and carboxylmethylation. Emerging evidence indicates, however, that FTase can farnesylate sequences outside the CaaX motif and that these sequences do not undergo the canonical 3-step pathway. In this work, we report a comprehensive evaluation of all possible CXXX sequences as FTase targets using the reporter Ydj1, an Hsp40 chaperone that only requires farnesylation for its activity. Our genetic and high-throughput sequencing approach reveals an unprecedented profile of sequences that yeast FTase can recognize in vivo, which effectively expands the potential target space of FTase within the yeast proteome. We also document that yeast FTase specificity is majorly influenced by restrictive amino acids at a2 and X positions as opposed to the resemblance of CaaX motif as previously regarded. This first complete evaluation of CXXX space expands the complexity of protein isoprenylation and marks a key step forward in understanding the potential scope of targets for this isoprenylation pathway.


Assuntos
Alquil e Aril Transferases , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Farnesiltranstransferase/genética , Farnesiltranstransferase/metabolismo , Sequência de Aminoácidos , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Prenilação de Proteína , Proteínas/genética , Especificidade por Substrato
14.
Plant J ; 114(5): 1178-1201, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36891828

RESUMO

From the perspectives of pathway evolution, discovery and engineering of plant specialized metabolism, the nature of the biosynthetic routes represents a critical aspect. Classical models depict biosynthesis typically from an end-point angle and as linear, for example, connecting central and specialized metabolism. As the number of functionally elucidated routes increased, the enzymatic foundation of complex plant chemistries became increasingly well understood. The perception of linear pathway models has been severely challenged. With a focus on plant terpenoid specialized metabolism, we review here illustrative examples supporting that plants have evolved complex networks driving chemical diversification. The completion of several diterpene, sesquiterpene and monoterpene routes shows complex formation of scaffolds and their subsequent functionalization. These networks show that branch points, including multiple sub-routes, mean that metabolic grids are the rule rather than the exception. This concept presents significant implications for biotechnological production.


Assuntos
Alquil e Aril Transferases , Diterpenos , Sesquiterpenos , Filogenia , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Diterpenos/metabolismo , Plantas/genética , Plantas/metabolismo , Sesquiterpenos/metabolismo , Terpenos/metabolismo , Proteínas de Plantas/metabolismo
15.
J Biomol Struct Dyn ; 41(2): 457-468, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-34866550

RESUMO

UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) is an important enzyme involved in the first cytosolic step of bacterial cell wall synthesis. In this study a combination of ligand based and structure based in silico virtual screening methods were utilised for screening of more than 50,000 drug-like compounds from CSIR-IIIM in-house compound library in order to identify potent inhibitors of MurA. The identified hits were validated in vitro under various incubation conditions using Malachite green phosphate assay, and two potent hits viz 3772-9534 and D396-0012 were identified. Among these hits, compound 3772-9534 showed significant changes in the activity values in different assay conditions. The MD simulation study of 3772-9534 suggested a novel binding site in MurA enzyme, independent of the two-substrate binding sites. Binding of inhibitors at the allosteric site induces conformational changes in the enzyme, which leads to inhibition of enzymatic activity. Overall, the study offers new insight for targeting MurA, which may promote the discovery of novel MurA allosteric site inhibitors.


Assuntos
Alquil e Aril Transferases , Alquil e Aril Transferases/metabolismo , Sítios de Ligação , Simulação por Computador , Inibidores Enzimáticos/química
16.
Biochem Genet ; 61(3): 1185-1209, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36534333

RESUMO

Terpene synthases (TPSs) catalyze terpenoid synthesis and affect the intracellular isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) concentration. In this study, we mined the in silico genome-wide TPS genes of Hevea brasiliensis and identified 47 full-length TPS genes. They had DDXXD, DXDD, NSE/DTE, RR(X)8 W, EA(X)W, and other conserved motifs. The phylogenetic tree analysis revealed that the TPSs of H.brasiliensis (HbTPSs) were divided into five subfamilies, TPS-a, TPS-b, TPS-c, TPS-e/f, and TPS-g. HbTPSs were predicted to have functions in the cellular components, molecular functions, and biological processes. HbTPSs were involved in seven pathways, which were K14173, K14175, K15803, K04120, K04121, K17982, and K12742 in the secondary metabolite pathway prediction. Three-dimensional structures of HbTPSs of 7 pathways were predicted, and DDXXD, NSE/DTE, and EA(X)W conserved motifs near the binding sites were found. Cis-acting elements analysis showed that they had more cis-acting elements related to phytohormone responsiveness, which indicated that terpenoid biosynthesis might be related to phytohormone regulation. RNA-Seq analysis showed that different HbTPSs were expressed differentially in different tissues. This study's results help reveal the role of HbTPSs and their molecular mechanism and help resolve the regulatory mechanism of terpenoid biosynthesis in H.brasiliensis.


Assuntos
Alquil e Aril Transferases , Hevea , Hevea/genética , Hevea/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Filogenia , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
Biochem Biophys Res Commun ; 639: 46-53, 2023 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-36463760

RESUMO

Long noncoding RNAs (lncRNAs) are emerging as critical regulators in the biological development of breast cancer. In this study, we aimed to determine the roles and mechanisms of the lncRNA COX10 divergent transcript (COX10-DT) in breast cancer progression. The relative expression level of COX10-DT was calculated in matched breast cancer tissues and adjacent normal tissues using quantitative real-time PCR. Gain-of-function and loss-of-function approaches further revealed the functions and mechanisms of COX10-DT in breast cancer cells. Clinically, we found that the lncRNA COX10-DT was commonly overexpressed in breast cancer tissues compared to paired peritumoural tissues. Functionally, the lncRNA COX10-DT might promote the proliferation and migration of breast cancer cells. Mechanistically, the lncRNA COX10-DT did not play a role by regulating the expression of its divergent gene COX10 but acted as a competitive endogenous RNA (ceRNA) by directly sponging miR-206, which further regulated the expression of brain-derived neurotrophic factor (BDNF). Taken together, our results proved that the lncRNA COX10-DT could function via the COX10-DT/miR-206/BDNF axis, thereby promoting the development of breast cancer. These findings indicated that the lncRNA COX10-DT might be a potential biomarker and therapeutic target for breast cancer.


Assuntos
Alquil e Aril Transferases , Neoplasias da Mama , MicroRNAs , RNA Longo não Codificante , Humanos , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Linhagem Celular Tumoral , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Movimento Celular/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Membrana/metabolismo , Alquil e Aril Transferases/metabolismo
18.
Cells ; 11(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36497016

RESUMO

Müller glia (MG), the principal glial cell of the retina, have a metabolism that defies categorization into glycolytic versus oxidative. We showed that MG mount a strong hypoxia response to ocular hypertension, raising the question of their relative reliance on mitochondria for function. To explore the role of oxidative phosphorylation (OXPHOS) in MG energy production in vivo, we generated and characterized adult mice in which MG have impaired cytochrome c oxidase (COXIV) activity through knockout of the COXIV constituent COX10. Histochemistry and protein analysis showed that COXIV protein levels were significantly lower in knockout mouse retina compared to control. Loss of COXIV activity in MG did not induce structural abnormalities, though oxidative stress was increased. Electroretinography assessment showed that knocking out COX10 significantly impaired scotopic a- and b-wave responses. Inhibiting mitochondrial respiration in MG also altered the retinal glycolytic profile. However, blocking OXPHOS in MG did not significantly exacerbate retinal ganglion cell (RGC) loss or photopic negative response after ocular hypertension (OHT). These results suggest that MG were able to compensate for reduced COXIV stability by maintaining fundamental processes, but changes in retinal physiology and metabolism-associated proteins indicate subtle changes in MG function.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Glaucoma , Hipertensão Ocular , Animais , Camundongos , Alquil e Aril Transferases/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Eletrorretinografia , Glaucoma/metabolismo , Proteínas de Membrana/metabolismo , Camundongos Knockout , Neuroglia/metabolismo , Hipertensão Ocular/metabolismo , Retina/metabolismo
19.
Appl Microbiol Biotechnol ; 106(23): 7779-7791, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36350403

RESUMO

Ganoderma sinense, with more than 2000 years of medicinal history, is a fungus of the basidiomycetes that is rich in polysaccharides and terpenoids. However, the biosynthesis of terpenes, especially sesquiterpenes, has been little studied. The functional identification of sesquiterpene synthases from G. sinense is of great significance to the study of fungal terpenoid biosynthesis and regulation. Our research group has completed the functional characterization of 21 sesquiterpene synthase genes from G. sinense. It was found that gleenol, biosynthesis of which is catalyzed by the sesquiterpene synthase GsSTS26 and GsSTS27, has the functions of killing termites, antihelminth, and plant growth regulation. In the unmodified E. coli Rosetta (DE3) strain, the content of gleenol produced by sesquiterpene synthase from G. sinense is low, which makes it difficult to meet the demand of industrial production and the market. Therefore, it is of great significance to obtain high-yielding strains by means of synthetic biology. In this study, we constructed eight recombinant strains by using tandem gene expression and promoter engineering, and the content of gleenol was increased by up to 23-fold. In this study, we realized the de novo synthesis of gleenol in E. coli and provided a basis for the biosynthesis of terpenoids in basidiomycetes. KEY POINTS: • Eight recombinant expression systems were constructed by using tandem genes and promoter engineering. • The recombinant strain promoted the efficient production of gleenol in E. coli Rosetta (DE3). • The recombinant strain achieved de novo production of gleenol in E. coli.


Assuntos
Alquil e Aril Transferases , Sesquiterpenos , Escherichia coli/genética , Escherichia coli/metabolismo , Sesquiterpenos/metabolismo , Terpenos/metabolismo , Alquil e Aril Transferases/metabolismo
20.
J Med Chem ; 65(20): 13753-13770, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36218371

RESUMO

Infections by fungal pathogens are difficult to treat due to a paucity of antifungals and emerging resistances. Next-generation antifungals therefore are needed urgently. We have developed compounds that prevent farnesylation of Cryptoccoccus neoformans Ras protein by inhibiting protein farnesyltransferase with 3-4 nanomolar affinities. Farnesylation directs Ras to the cell membrane and is required for infectivity of this lethal pathogenic fungus. Our high-affinity compounds inhibit fungal growth with 3-6 micromolar minimum inhibitory concentrations (MICs), 4- to 8-fold better than Fluconazole, an antifungal commonly used in the clinic. Compounds bound with distinct inhibition mechanisms at two alternative, partially overlapping binding sites, accessed via different inhibitor conformations. We showed that antifungal potency depends critically on the selected inhibition mechanism because this determines the efficacy of an inhibitor at low in vivo levels of enzyme and farnesyl substrate. We elucidated how chemical modifications of the antifungals encode desired inhibitor conformation and concomitant inhibitory mechanism.


Assuntos
Alquil e Aril Transferases , Antifúngicos , Antifúngicos/farmacologia , Fluconazol , Alquil e Aril Transferases/metabolismo , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...